
Abstract: A three-body potential for neon was calculated by ab initio methods and
fitted to an analytic form for further use in simulations of fluid neon. Counterpoised
calculations were performed on the same level as in a previous calculation of a pair
potential used in simulations. The non-pair-additive part of the potential decays
rapidly with distance and is typically below 1 % of the dimer potential at its
equilibrium distance. The calculated third virial coefficient shows fair agreement with
the scarce experimental data.
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Introduction

As part of an effort to calculate bulk properties of liquids ab
initio we have previously published two pair potentials for
neon, NE 1[1] and NE 2.[2] Both of them, as well as an ab initio
potential for argon published by Woon,[3] have been applied in
simulations of many fluid properties.[4±11] It was shown by
indirect arguments that many-body interactions are small or
negligible for certain properties like the radial distribution
function, transport properties and several thermodynamic
properties derived from energies and pressure. However, they
make a significant contribution to energies and pressure at
high density. To confirm these arguments by direct computa-
tions we have calculated a three-body ab initio potential.

We are not aware of any analytical Ne3 potentials in the
literature, but several authors have calculated single points on
the Ne3 potential surface.[12±14] More work has been published
recently on He3. Parish and Dykstra[15] have reported an
analytical three-body potential for helium. Bhattacharya and
Anderson[16] and Tao[17] have calculated single points and
come to the surprising conclusion that, at the correlated level,
the three-body interaction converges with the basis set much
faster than the two-body interaction. Rùeggen et al.[18,19] used
a new model to obtain three-body energies that are free of
basis set superposition errors (BSSE). In general the three-
body interactions were found to decay rapidly, usually being
less than 1 % of the dimer interaction at the dimer-equili-

brium distance. Bulski and Chalasinski[20] showed that, for
equilateral triangles of helium and neon, the exchange-
repulsion and the triple-dipole nonadditivity have different
signs and cancel to a great extent in the region of the dimer-
equilibrium distance. Barker[21,22] discusses the many-body
effect for energies and pressure of rare gases in several papers.
He showed that excellent empirical pair potentials combined
with the Axilrod ± Teller triple-dipole term yield good ener-
gies and pressures, leading to the conclusion that overlap-
dependent many-body interactions must add up to something
close to zero for a range of densities. Sadus and Prausnitz[23]

conclude from an empirical study of a Lennard-Jones pair
potential with added Axilrod ± Teller and repulsion terms that
three-body repulsion makes a significant contribution to the
three-body interactions in the liquid phase and that the effect
of three-body dispersion is offset substantially by three-body
repulsion. Recently, Cohen and Murrell[24] reported an
analytical function for an ab initio three-body potential of
He3. They state that the third-order, triple-dipole dispersion
energy is of minimal importance in comparison with the three-
body exchange term except at very large internuclear
separations. Wind and Rùeggen[25] calculated ab initio the
three-body interaction in the (H2)3 trimer including all the
fifth-order corrections, which should yield accurate triple-
dipole dispersion energies. They found that the Axilrod ±
Teller term gives a qualitatively correct picture, but that
higher order terms should be included for a quantitative
description; for distances less than 10 au higher order terms
contribute significantly and at short range, the RHF term is
most important. For a further discussion of the controversy
about the significance of many-body effects see recent
reviews.[26,27]

Indirect arguments about the importance of quantum
effects on the radial pair distribution function of liquid argon
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and neon[9,10] were confirmed by simulations with quantum-
effective potentials, resulting in the first ab initio calculated
structures of liquids with experimental accuracies.[11] Similar-
ly, the potential calculated in this work is used for a direct
investigation of the influence of many-body effects on differ-
ent liquid properties in the following paper.

Computational Methods

Ab initio calculations were performed for 47 points on the interatomic
potential energy surface of the neon trimer. The basis set and the
correlation method used here are the same as those applied by Eggen-
berger et al.[1] to obtain a neon dimer potential. The basis set consists of
Huzinaga�s (14s 10p)/[7s6p] basis increased by four d functions (exponents:
2.21, 0.89, 0.35 and 0.14) and one f function (exponent: 0.3). Electron
correlation was treated by fourth-order Mùller ± Plesset perturbation
theory including up to quadruple excitations (MP4(SDTQ)). The calcu-
lations were performed with the GAUSSIAN program set.[28] The basis set
superposition error (BSSE) was corrected by the full counterpoise
correction.[29] Some problems related to its calculation in the case of the
virial coefficient will be discussed below. The computer time needed for the
calculation of one point was about 4 days on a 135 MHz DEC-alpha
workstation or 1 hour on a NEC-SX3.

The basis set and level of correlation are identical with those used to obtain
the pair potential NE 1.[1] They were chosen to be consistent with the
previous calculations for comparison purposes and as a compromise
between quality and consumption of computer time. As this level is not
fully adequate for the calculation of the long-range Axilrod ± Teller ± Muto
effect, direct conclusions about its size cannot be drawn. However, as fluid
properties deviate mainly at high densities we assume that the short-range
exchange effect is of much greater importance. This short-range effect
should be reliably obtained in the present calculations.

Different configurations were selected to study the potential surface by
changing the angle a (see Figure 1) in steps of 308 from 308 to 1808. With
the distances R12 and R23 always kept equal, one length was selected at 308,
13 different lengths were selected at 608, 9 at 908, 5 at 1208, 7 at 1508 and 7 at

Figure 1. Definition of the neon trimer structure.

1808. Two additional points were then selected at very long distances for
small angles to check the decay to zero and, hence, the numerical accuracy.
Finally, three random positions were chosen (see Table 1). The three dimer
interactions were subtracted from the complete interaction energy at these
points and the remaining nonadditive part was fitted to an analytical
expression as discussed in the next section.

In Table 1 only three mixed points were used for the fit, which might look
like a parsimonious selection. However, the potential surfaces are generally
smooth.[30] The sides of the triangle are limited to a relatively small range
(below � 0.8 s the total potential becomes extremely repulsive, above �
1.2 s the non-pair-additive part gets very small) and, hence, can deviate
only little from an isosceles triangle.[*] The three additional points at the
bottom of Table 1 deviate from the fitted curve (see below) by the same
magnitude as the points included in the fit. A similar argument is probably
responsible for the fact that the points can be fitted with a two-parameter
equation, one parameter representing the overall size (1), and one the
overall shape (Q, see below).

To obtain the third virial coefficient a three-dimensional integration has to
be carried out. This was performed with the standard subroutine DQAND
from the IMSL library.[31] The integration from 0 to 3000 pm for the two
distances and 08 to 1808 for the angle leads to many cancellations and,
therefore, to numerical inaccuracies due to the different signs in the
repulsive and attractive part. Hence, each variable was divided into
30 integration areas. The total numerical error is estimated to be less than
1% for Cadd (pair-additive) and less than 4 % for DC (the non-pair-additive
part of the third virial coefficient).

Results and Discussion

The ab initio calculated points used for the fit are listed in
Table 1. The total interaction energy DE3(f3) [Eq. (1)], the
counterpoised interaction energy of the trimer, was calculated
from the Ne3 energy E3(f3) subtracting the three monomer
energies E1(f3), which in turn were obtained from the full Ne3

basis set.

DE3(f3)�E3(f3)ÿ 3E1(f3) (1)

The fi values symbolise a basis set corresponding to i atoms,
and E1, E2 and E3 the monomer, dimer and trimer energy,
respectively. This definition of the interaction energy was
called the site ± site function counterpoise method by Wells
and Wilson.[32]

Whereas the above definition of the counterpoised three-
particle energy DE3(f3) yields a potential to be used in the
following paper without ambiguity, there are two possible
ways to define a counterpoised non-pair-additive part of the
energy that have some relevance in the calculation of the
virial coefficient. To obtain the nonadditive part DDE3(f3)
one has to subtract the three dimer interactions DE2 from the
total interaction energy DE3(f3). The results of the two
different procedures (a and b) are displayed in the last two
columns of Table 1.
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Abstract in German: Zur späteren Verwendung in Simula-
tionen von flüssigem und superkritischem Neon wird ein Drei-
Teilchen-Potential für Neon ab initio punktweise berechnet und
durch einen analytischen Ansatz wiedergegeben. Die counter-
poise-korrigierten Rechnungen wurden auf dem gleichen Ni-
veau durchgeführt, auf dem früher ein Paarpotential für
Simulationen berechnet wurde. Der nicht-paar-additive Teil
des Potentials fällt für grössere Abstände schnell ab und beträgt
normalerweise weniger als 1 % des Dimerpotentials am
Gleichgewichtsabstand. Die berechneten dritten Virialkoeffizi-
enten liegen im Streubereich der wenigen experimentellen
Daten.

[*] A measure for this deviation can be defined by taking the three possible
ratios < 1 of the three sides and selecting the largest of them. The
closer this value is to 1, the closer to isosceles is the triangle. The three
mixed points used for the fit represent values of 0.87, 0.91, and 0.94
respectively. The smallest value possible within the above limits can be
shown to be 0.82 [(0.8/1.2)1/2] . The three additional points at the bottom
of the table not used for the fit have values of 0.80, 0.85 and 0.91 (the
first including a side below 0.8 s).
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a) DDE3(f3)a [Eq. (2)] was obtained by subtracting the
counterpoised pair potential published previously [Eq. (3)][1]

(for very short distances a few additional dimer points were
calculated and directly subtracted from the total interaction
energy). These are the values used for the fit and, together
with the dimer potential, for the calculation of the third virial
coefficient (see below).

DDE3(f3)a�DE3(f3)ÿ 3DE2(f2) (2)

DE2(f2)�E2(f2)ÿ 2E1(f2) (3)

b) DDE3(f3)b [Eq. (4)] was obtained by a more expensive
procedure. For each distance occurring in the trimers a dimer
calculation with the (ghost) orbitals of the corresponding third
neon atom was performed. The monomer energies E1(f3)
obtained with the full Ne3 basis set were subtracted from the
dimer energy E2(f3) (Equation (5), pair interaction coun-
terpoised with trimer basis).

DDE3(f3)b�DE3(f3)ÿ 3DE2(f3) (4)

DE2(f3)�E2(f3)ÿ 2E1(f3) (5)
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Table 1. Points on the neon trimer surface where ab initio calculations were performed and the resulting energies. For structure definition see Figure 1; for
different corrections a and b of the BSSE, see text.

a (8) R12 (pm) R23 (pm) R13 (pm) Total interaction Nonadditive interaction Nonadditive interaction
DE3(f3) (mEh) DDE3(f3)a mEh) DDE3(f3)b (mEh)

180 220.0 220.0 440.0 10.12211 ÿ 0.00500 0.05660
260.0 260.0 520.0 0.93253 ÿ 0.01077 0.00264
280.0 280.0 560.0 0.06912 ÿ 0.00495 0.00030
300.0 300.0 600.0 ÿ 0.18243 ÿ 0.00188 ÿ 0.00012
315.0 315.0 630.0 ÿ 0.21956 ÿ 0.00084 ÿ 0.00014
330.0 330.0 660.0 ÿ 0.20836 ÿ 0.00036 ÿ 0.00014
370.0 370.0 740.0 ÿ 0.13037 ÿ 0.00005 ÿ 0.00007

150 240.0 240.0 463.6 3.43080 ÿ 0.01048 0.01143
260.0 260.0 502.3 0.93451 ÿ 0.00679 0.00242
290.0 290.0 560.2 ÿ 0.09947 ÿ 0.00185 0.00003
300.0 300.0 579.6 ÿ 0.18248 ÿ 0.00112 ÿ 0.00007
315.0 315.0 608.5 ÿ 0.21986 ÿ 0.00055 ÿ 0.00010
330.0 330.0 637.5 ÿ 0.20873 ÿ 0.00029 ÿ 0.00009
370.0 370.0 714.8 ÿ 0.13058 ÿ 0.00004 ÿ 0.00005

120 240.0 240.0 415.7 3.42257 ÿ 0.00236 0.01005
290.0 290.0 502.3 ÿ 0.10336 ÿ 0.00068 0.00036
310.0 310.0 537.0 ÿ 0.21810 ÿ 0.00031 0.00008
330.0 330.0 571.6 ÿ 0.21085 ÿ 0.00017 0.00000
370.0 370.0 640.9 ÿ 0.13163 ÿ 0.00000 0.00002

90 180.0 180.0 254.6 70.91055 ÿ 0.56341 ÿ 1.22780
220.0 220.0 311.1 10.02105 ÿ 0.02308 0.00530
240.0 240.0 339.4 3.35940 ÿ 0.00382 0.00734
260.0 260.0 367.7 0.88428 ÿ 0.00040 0.00404
280.0 280.0 396.0 0.03493 0.00010 0.00189
300.0 300.0 424.3 ÿ 0.20643 0.00010 0.00085
315.0 315.0 445.5 ÿ 0.23788 0.00004 0.00049
330.0 330.0 466.7 ÿ 0.22233 0.00000 0.00028
370.0 370.0 523.3 ÿ 0.13724 0.00005 0.00008

60 150.0 150.0 150.0 400.23495 ÿ 27.01480 ÿ 26.33715
220.0 220.0 220.0 14.85970 ÿ 0.36608 ÿ 0.30410
240.0 240.0 240.0 5.09190 ÿ 0.09534 ÿ 0.07083
260.0 260.0 260.0 1.40488 ÿ 0.02237 ÿ 0.01247
280.0 280.0 280.0 0.11471 ÿ 0.00412 0.00004
290.0 290.0 290.0 ÿ 0.14007 ÿ 0.00135 0.00136
300.0 300.0 300.0 ÿ 0.26600 ÿ 0.00020 0.00166
310.0 310.0 310.0 ÿ 0.31640 0.00022 0.00154
315.0 315.0 315.0 ÿ 0.32406 0.00030 0.00143
320.0 320.0 320.0 ÿ 0.32406 0.00030 0.00132
340.0 340.0 340.0 ÿ 0.28287 0.00024 0.00081
370.0 370.0 370.0 ÿ 0.19395 0.00015 0.00036
750.0 750.0 750.0 ÿ 0.00253 0.00001 ÿ 0.00001

30 500.0 500.0 258.8 0.49863 0.00013 0.00018
21.2 800.0 800.0 295.0 ÿ 0.07264 0.00002 ÿ 0.00001
16.3 800.0 800.0 226.6 3.59994 0.00004 0.00000
Mixed 480.0 415.7 240.0 1.68251 0.00023 0.00050

340.0 310.0 280.0 ÿ 0.16006 0.00024 0.00176
330.0 310.0 290.0 ÿ 0.25463 0.00022 0.00164

[a] 355.0 284.0 227.0 ÿ 0.00090
[a] 307.0 260.0 220.0 ÿ 0.01842
[a] 266.0 242.0 220.0 ÿ 0.07517

[a] Not used for the fit.
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The results of these two procedures are quite different and
yield different results, but one should be aware that the effects
are mostly very small. Procedure b) is consistent in relation to
the counterpoise correction, since for all calculations involved
the trimer basis set is used. However, in relation to the
concept of dividing the overall interaction into different
many-body interactions it is inconsistent, as the pair inter-
action DE2(f3) depends on a third virtual body. For simu-
lations this division into additive and non-additive interac-
tions is irrelevant, as only the total interaction is of
importance. However, for the virial coefficients procedure
b) leads to difficulties as it is inconsistent for the many-body
interations. Therefore, we used procedure a) for a fit of the
nonadditive trimer interaction. This fitted curve was then used
for the calculation of the third virial coefficient below.

Figure 2 shows sections of the nonadditive part DDE3(f3)a

of the trimer potential surface for three angles a (the neon
atoms forming an isosceles triangle with equal sides R). The

Figure 2. Non-pair-additive interaction energy DDE3(f3)a [Eq. (2)] for an
isosceles neon triangle as a function of the side length R�R12�R23 for
three different angles a.

potential is slightly positive at long distances for the smaller
angles, but becomes very attractive at short distances. For
large angles it is always attractive; in the case of the linear
arrangement it becomes strong immediately below the
equilibrium distance, whereas at 908 this happens at much
shorter distances. The behaviour at long and medium
distances is qualitatively equal to the Axilrod ± Teller triple-
dipole term. At shorter distances, where overlap of the
electron clouds becomes important, the energies become
negative in all cases, whereas at very short distances the linear
arrangement (Table 1) experiences increasing repulsion. Ad-
ditional calculations for even shorter distances also showed
such a repulsion for nonlinear arrangements with obtuse
angles.

Figure 3 shows a representation of the nonadditive part
DDE3(f3)a of the trimer potential surface as a function of the
angle a and the side length R for an isosceles triangle.
Whereas the potential is relatively flat at longer distances, it
shows a strong maximum at 260 pm (front left side) close to
zero energy for 908, but with large negative values for smaller
and larger angles.

Although the numbers are quite different, the qualitative
features discussed with the help of Figures 2 and 3 are the

Figure 3. Non-pair-additive interaction energy DDE3(f3)a [Eq. (2)] for an
isosceles neon triangle as a function of the angle a and the side length R�
R12�R23.

same for DDE3(f3)a and DDE3(f3)b. The numbers in Table 1
might be compared with results for single points published
recently [12±14] . Table 2 gives our values for structures pub-
lished in the literature, interpolated by cubic splines from the
values in Table 1 at constant angles.

It can be seen at a first glance that the agreement between
numbers from different sources is poor. However, one has to
be aware that most values agree in that they are extremely
small. Our DDE3(f3)b energy shows fair agreement with the
calculation by Chalasinski et al.,[12] which is of coupled cluster
type with single, double and noniterative triple excitations
and was also calculated with procedure b). The only numbers
in the table, which are larger than 2 mEh, are for the equilateral
triangle at short distances. We can see a qualitative agreement
between Wells and Wilson�s[13] SCF results, which are nearly
BSSE-free, and the present work.

Many analytical equations were tested to fit the non-
additive interaction energy DDE3(f3)a. Several of them
included Axilrod ± Teller type terms. However, these terms
did not contribute significantly to improving the fits, probably
because our level of correlation in the quantum-chemical
calculations did not reproduce the long-range part of the
potential adequately. Finally, the function given in Equa-
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Table 2. Comparison of non-pair-additive interaction energies obtained in this
work with previous calculations from the literature (energies in mEh) for several
equilateral and isosceles trimers.

R/ao a(8) DDE3(f3)a DDE3(f3)b Ref. [12] Ref. [13] Ref. [14]

6.00 equilateral 60 0.31 1.38 1.81
5.75 equilateral 0.05 1.65 ÿ 1.4
5.50 equilateral ÿ 1.19 1.41 ÿ 3.5
5.25 equilateral ÿ 5.33 ÿ 0.74 ÿ 8.7
5.00 equilateral ÿ 17.20 ÿ 9.00 ÿ 20.5
5.50 isosceles 90 0.16 1.19 0.0

120 ÿ 0.65 0.30 0.2
150 ÿ 1.75 ÿ 0.03 0.2

5.9645 isosceles 60 0.30 1.42 ÿ 0.68
90 0.04 0.48 ÿ 0.01

120 ÿ 0.25 0.08 0.01
180 ÿ 0.81 ÿ 0.14 0.02
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tion (6) was chosen for the counterpoise-corrected nonaddi-
tive part of the interaction energy.

DDE3(f3)a� a1/(14(1� a21� a31
2))

�Q(a4� a51)/(14(1� a61� a71
2))�Q2a8/13 (6)

1�R12�R23�R13

Q� cos(a1)cos(a2)cos(a3)
a1�ÿ 1494.04316399 a5� 196.84364784
a2�ÿ 2.40436522� 10ÿ2 a6�ÿ 1.00003202� 10ÿ2

a3� 1.98381726� 10ÿ4 a7� 4.64397240� 10ÿ5

a4�ÿ 3.34763381� 104 a8�ÿ 77.45577385

ai are the angles of the triangle formed by the three neon
atoms and ai are parameters in atomic units. Not all figures
displayed are significant. We show them only to avoid round-
off errors. For the fit 18 additional points for isosceles
triangles with sides of length 800 pm and angles smaller than
608 were chosen with an energy set to zero in order to enforce
complete decay of the function at large distances. This is
justified by a comparison with the numbers from quantum
chemical calculations in Table 1. The points could be fitted
with a standard deviation of about 0.3 mEh, which is slightly
more than the numerical accuracy of the ab initio energies,
which we estimate to be about 0.1 mEh.

The total interaction energy DE3(f3) is then given by
Equation (7), where DE2(f2) [Eq. (8)] is the original NE 1
pair potential and ai are parameters in atomic units. The third
virial coefficient C consists of a part Cadd [Eq. (9)] due to the
additive pair interactions and a part DC [Eq. (10)] due to the
nonadditive three-particle interaction.[33]

DE3(f3)�DDE3(f3)a � 3DE2(f2) (7)

DE2(f2)� a1eÿa2R� a3Rÿ12� a4Rÿ10� a5Rÿ8 � a6Rÿ6 (8)

a1� 148.735474 a4�ÿ 5160.348
a2� 2.3520917 a5�ÿ 8.3724779
a3� 37497.54 a6�ÿ 6.8028878

Cadd�ÿ 8p2N2
A/3
� � �

[exp(ÿV12/kT)ÿ 1]�
[exp(ÿV13/kT)ÿ 1][exp(ÿV23/kT)ÿ 1]R12R13R23dR12dR13dR23

(9)

DC�ÿ 8p2N2
A/3
� � �

[exp(ÿDV3/kT)ÿ 1]�
exp{ÿ (V12�V13�V23)/kT}R12R13R23dR12dR13dR23

(10)

In Equations (9) and (10) DV3�DDE3(f3)a and Vij�
DE2(f2). Table 3 displays values for Cadd, DC and their sum
at different temperatures, which are high enough for quantum
effects to be negligible. The numerical accuracy of the
calculated data has already been discussed. We do not know
the error due to the inaccuracy of the potential, but we
estimate it to be much larger than the numerical one. This is
especially true for DC. The numbers given in the table were
obtained with the fitted function from the above integral for
the limit of very large R (3000 pm). The fitted function has a
small, but very slowly decaying tail that leads to unrealistic
values at long distances in the integration. If the integration is
taken only to 750 pm, where the values from the ab initio
calculations converge to zero, DC is about 30 % smaller. The
main conclusion that may be drawn from Table 3 is that DC is

very small, usually only a few per cent of the additive part
Cadd, but increases at low temperatures.

Experimental values are shown for comparison in Table 3.
It can be seen that there is quite a disagreement between the
different sources. We are not aware of any more recent or
more accurate data. The results by Holborn and Otto[34, 35]

show an unusual scattering with temperature and disagree at
most temperatures with other experimental and calculated
values. Therefore, we assume that they are rather inaccurate.

Two decades ago Les[36] published calculations with a
Conway and Murrell[37] pair potential and the Axilrod ± Tell-
er potential for the nonadditive part. In the temperature range
given in the table, he found values for Cadd between 216 and
184 cm6 molÿ2 and for DC between ÿ 3.3 and ÿ 1.3 cm6 molÿ2,
in reasonable agreement with our results.

In the following paper, further comparisons with experi-
ments are made by application of the potential in simulations
to investigate the influence of the three-body interactions on
different fluid properties at high densities.
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